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Abstract—The paper deals with a study of model predictive 
control applied to three-phase Permanent Magnet Synchronous 
Motors (PMSM). These motors are used in drives of robots 
and machine tools. The construction of their model is discussed 
here with respect to a model-based control design. The model 
is composed via mathematical-physical analysis. The analysis 
is outlined in the main theoretical points. The predictive control 
is explained as a promising alternative to standard solution 
based on vector cascade control. In predictive control design, 
the quadratic criterion, equations of predictions and specific 
square-root optimization procedure are explained. The propo-
sed solution is illustrated by several simulation examples 
and compared with data records of real experiment of vector 
control. 

I. INTRODUCTION 

Synchronous motors with a three-phase stator winding 
and a rotor with permanent magnets (Alternate Current – AC 
motors) belong to the last, up-to-date generation of motors. 
They are applied as drives to the machine tools and robots. 
Unlike Direct Current (DC) /brushes/ motors and Electrically 
Commuted (EC) /DC brushless/ motors, Permanent Magnet 
Synchronous Motors (PMSM) (Fig. 1) may be configured 
as linear motors. They work on principle of simultaneous 
control of amplitude and frequency of all three terminal 
harmonic currents with Pulse-Width-Modulation (PWM). 
The stator of a three-phase AC motor represents three sinu-
soidally distributed windings whose axes are displaced 
by 120°. When the windings are excited with balanced three-
phase sinusoidal currents, the combined effect is equivalent 
to having a single sinusoidally distributed winding excited 
with a constant current and rotating at the stator frequency. 
Magnetic field of the rotor is supplied by permanent magnets 
instead of electromagnets [5]. 

From control point of view, there are three main tasks: 
position control, speed control and current (torque) control. 
The tasks are closely related to a control configuration 
or control loops. An outer loop is the position loop, a middle 
loop is the speed loop and an internal loop is the current loop. 

In this paper, the speed control task is studied. Thus, 
the speed and current loops will be investigated. The task 
will be discussed for the conventional control approach 
based on vector control with a cascade of PI controllers 
and for advanced control approach based on Generalized 
Predictive Control (GPC) [1], [4], [5]. The GPC is investi-
gated as a general, flexible alternative, which solves the both 
speed and current loops together. 

The paper is organized as follows. The section II deals 
with a suitable mathematical-physical model for control 
design. The section III briefly describes conventional loop 
scheme of vector control. The section IV discusses the model 
modification and related assumptions for predictive control 
design. The section V concerns with the main points of GPC 
design. In the section, there is a derivation of equations 
of predictions and explanation of square-root minimizing 
procedure of quadratic criterion. The generation of control 
actions as a result of the minimization is discussed. The sec-
tion VI demonstrates the behaviour of the conventional vector 
control and the behaviour of the model predictive control. 

 
Figure 1.  Schematic cross section of PM Synchornous Motor 
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II. CONTROL-ORIENTED MODEL OF PMSM DRIVES 

Mathematical-physical model of PMSM drives is impor-
tant both for the outline of conventional vector control [3], [5]  
and mainly for model-based control approaches in general. 
The model serves as a simulation model for rapid prototyping 
of the controllers. The model of permanent magnet synchro-
nous motors arises from several natural laws and relations. 
Note, that the focus is given on stator part of the motor, where 
the electric winding (coils) are built in. From rotor point 
of view, only knowledge of magnetic properties of permanent 
magnets is necessary. 

A. Used Notation 

The model covers the relations of the equilibrium of current 
and voltage and appropriate relations of voltage distribution 
for individual phases of the three-phase system. The model 
contains number of parameters. Their notation and appropriate 
units are given as follows: 

SR  - stator resistance  [Ω, Ohm] 

SL  - stator inductance  [H, Henry] 

Mψ  - rotor magnetic flux  [Wb, Weber] 

p  - number of pole pairs,  pp = 2p - pole number 

B  - viscous coefficient of the load  [kg m2 s-1] 

J  - moment of load inertia  [kg m2] 

SI  - supply current [A] 

SU  - supply voltage [V] 

SCSBSA iii ,,  - currents of individual phases A, B, C  [A] 

SCSBSA uuu ,,  - voltages of individual phases A, B, C  [V] 

βα SS ii ,  - currents in βα −  system  [A] 

βα SS uu ,  - voltages in βα −  system  [V] 

SqSd ii ,  - currents in qd −  system  [A] 

SqSd uu ,  - voltages in qd −  system  [V] 

mm fn ,  - mechanical speed  [rpm], frequency  [Hz; s-1] 

ee fn ,  - electrical speed  [rpme], frequency [Hze; se
-1] 

mω  - mechanical angular speed  [rad s
-1] 

eω  - electrical angular speed  [rade s
-1] 

mϑ  - mechanical angle position  [rad] 

eϑ  - electrical angle position  [rade] 

Mτ  - motor driving torque [Nm] 

Lτ  - load torque [Nm] 

B. Initial Physical Descriptrion 

Let the system of the equations describing the physical 
basis of the PMSM begins by an equation of stator current 
equilibrium: 
 0=++ SCSBSA iii  (1) 

and analogously by an equation of stator voltage equilibrium: 

 0=++ SCSBSA uuu  (2) 

Further crucial relation is the stator voltage distribution 
expressed by a set of the following equations: 

   )( MASASSASSASASASSA iL
dt

d
iRu

dt

d
iRu ψψ ++=+=  (3) 

   )( MBSBSSBSSBSBSBSSB iL
dt

d
iRu

dt

d
iRu ψψ ++=→+=  (4) 

   )( MCSCSSCSSCSCSCSSC iL
dt

d
iRu

dt

d
iRu ψψ ++=+=  (5) 

where each line belongs to appropriate individual phase. 
Equations (1) - (5) express the electro-magnetic properties 
of the stator coil winding (Fig. 2). 

 
Figure 2.  Pole permanent magnet fied windigs for 6 poles 

The model in two-dimensional (2D) space of three-phase 
A-B-C system is completed by relation of electro-mechanical 
properties expressed by equation of torque equilibrium: 
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where  Mτ  is a motor (driving) torque given by 
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MBω  is a mechanical loss and  Lτ  is a load torque. All these 
quantities follow from the law of the energy conservation: 
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Figure 3.  2D A-B-C and α-β coordinate systems 

C. Simplifiing Transformations 

The equations (1) - (6) constitute the initial model repre-
sentation in fixed 2D three-phase system for individual A, B, 
C phases. That model can be simplified both for simulation 
and for control design by two specific transformations. 

The first is forward Clarke transformation (Fig. 3): 
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Considering the current equilibrium (1), then the transforma-
tion can be reduced as follows 
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This transformation converts (3) - (6) from 2D A-B-C phase 
system into 2D α - β system. The indicated transforming 
procedure is valid both current, voltage and flux components 
considering appropriate physical quantities respectively. It re-
presents reduction of three phases or three appropriate phase 
axes in only two α - β axes. The axes are fixed to the stator 
coordinate system i.e. to the initial A-B-C phase system. 

The transformed equations are expressed as follows: 

 eeMSSSSS i
dt

d
LiRu ϑϑψααα

)sin(−+=  (11) 

 eeMSSSSS i
dt

d
LiRu ϑϑψβββ

)cos(++=  (12) 

 LeSeSeMe pBiipJ τωϑϑψϑ αβ −−−= )(
2
3 sincos

2  (13) 

The second transformation is forward Park transformation 
shown in Fig. 4: 
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Figure 4.  2D α - β and d - q coordinate systems 

That transformation converts 2D α - β system (11) - (13) 
into 2D d - q system. The d - q system unlike two fixed 
α - β axes is constituted by two rotating d - q axes. The axes 
are connected to the rotating electromagnetic field of stator 
coil windings or rotating rotor with permanent magnets. 
AC PMSM is a synchronous motor as is mentioned directly 
in its label. Thus, the speed of electromagnetic rotating field is 
equal the speed of the rotor and proportionally synchronous 
with input current frequency. 

The equations (11) - (13) applying (14) get the forms: 

 SqeSSdSSdSSd iLi
dt

d
LiRu ω−+=  (15) 

 eMSdeSSqSSqSSq iLi
dt

d
LiRu ωψω +++=  (16) 

 LeSqMe pBipJ τωψϑ −−= 2

2
3  (17) 

The d - q model (15) - (17) can be expressed in state-space 
like form (18): 
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This model form represents as simple as possible mathe-
matical-physical description suitable both for simulation 
and model-based control design. The model (18) contains 
nonlinear elements. They will be discussed in section IV. 
According to the indicated model forms and corresponding 
transformations in this section, the usual industrial control,  
i.e. cascade PI control, is structured as well. The brief des-
cription of the cascade control is given in the following 
section III. Finally, for further explanation, the full state vector 
[iSd, iSq, ωe, τL]T is assumed to be known from measured vari-
ables ([iSA(BC), ωe, τL]

T) including also angular position ϑe. 
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Figure 5.  Speed control of PMSM by vector control (two-step cascade control) 

 
Figure 6.  Speed control of PMSM by Generalized Predictive Control 

III. USUAL CASCADE PI CONTROL 

As was mentioned, usual industrial control, i.e. cascade PI 
control, follows directly described way in section II. After 
measurement of individual phase currents and measurement 
or estimation rotor position and rotor speed, the currents are 
transformed stepwise by forward Clarke transformation 
and by forward Park transformation into d - q coordinate 
system. In it, the main control operation is executed. The de-
signed control actions (d - q voltages) are converted 
via inverse Park transformation back to α - β system (α - β 
voltages). The control actions in α - β system are led 
to the Sinewave generator, which generates appropriate indi-
vidual voltage magnitudes for individual A-B-C phases. 
The described way is illustrated in Fig. 5. 

The illustrated scheme of speed control of PMSM consists 
of two interconnected loops. The main (master) loop is 
a speed loop. The subsidiary (slave) loop is current loop 
realized as two parallel legs corresponding to torque and flux 
control respectively. Each loop or leg contains isolated 
PI controller. From control theory point of view, this arrange-
ment represents at least six control parameters (gains, time 
constants), which are usually empirically or by simple auto-
tuning algorithm set up [8]. 

IV. MODEL MODIFICATION AND ASSUMPTIONS 
FOR PREDICTIVE CONTROL DESIGN 

As was mentioned, the suitable model for model-based 
control design is a model in d - q coordinate system (18). 
In spite of its simplicity, it contains two nonlinear terms. Thus, 
for model based control, the model (18) has to be linearized, 
so that predictive control, a multistep approach, can be rea-
lized. The nonlinear terms may be linearized as follows: 
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The linearization or linearizing decomposition (19) arises 
from the following idea [7] and specific reference state: 
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Then, the resulting linearized form is: 
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This model form represents already usual state-space 
model, but with time-variant terms: 

 )()()(
)(

ttt
dt

td
CC uBxA

x +=  (22) 

)(tCA  is a time-variant state-space matrix, CB  is a constant 

input matrix. The variances of )(tCA  are given by variable 

eω  elements, i.e. ))(()( tt eCC ωAA = . 

The model (21), as against (18), can be already discretized 
by standard exponential discretization procedure to the form: 

 kkkk uBxAx +=+1  (23) 

 kk xCy =  (24) 

V. PREDICTIVE CONTROL 

Predictive Control is based on a minimization of a quad-
ratic criterion (25), in which the future system outputs are 
substituted by their predictions (26) expressed by the model  
given by (23) and (24) [1], [2]: 
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where ŷ , w  and u  are vectors of predictions (future pre-
dicted system outputs), references and control actions (system 
inputs) for a given prediction horizon :N  

T

Nkk
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and yQ  and uQ  are weighting control parameters: output 
and input matrix penalizations. The predictions Nkk ++ yy ˆ,,ˆ

1   
in appropriate time instants of the prediction horizon can be 
expressed recurrently by using function (26). 

The minimization of the criterion (25) can be provided 
in one shot as a least squares problem solution of algebraic 
system of equations [6]: 
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where Q  is orthogonal matrix, which rearranged matrix A  

into upper right triangle matrix R  or 1R respectively as it is 
indicated: 

                   cuR =   (29) 

      (30) 

Vector cz is a lost vector, whose Euclidean norm |cz| is equal 
value of square root √J (i.e. J = cz

Tcz). To obtain unknown 
control actions u, only upper part of the system (30) is need 
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Since a matrix R1 is upper triangle, then the control u is given 
directly by back-run procedure. 

VI. COMPARATIVE EXAMPLE 

In this section, there is a brief description of one compa-
rative example of the data from real experiment and the data 
obtained by simulation. The real experiment was realized 
on Siemens PMSM drive 1FK7022-5AK-1LG0 [8]. 

In the Fig. 7, there is time history of real measured data 
from the real experiment. In the Fig. 8, there is time history 
of the simulation data. The comparative simulation is provided 
by the mathematical model derived in section II. The used 
model parameters of PMSM drive were taken from confi-
guration manual [8] for the same motor as mentioned above. 

The figures show similar curses of time histories of corre-
sponding physical quantities: mechanical speed ωm, phase 
voltages uSA(BC) and phase currents iSA(BC). The obvious 
smoothness of the simulation is caused by considering 
the motor as ideal system without any disturbances. The both 
experiments run for triangular profile of desired rotational 
speed values within the interval <-100rpm, 100rpm>. 
The condition on zero (minimum) currents was included 
in both cases: real experiment and simulation. 
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Figure 7.  Speed control of PMSM by two-step cascade PI control – time histories of real experiment, sampling period Ts = 0.000125s 

 
Figure 8.  Speed control of PMSM by Generalized Predictive Control – time histories of simulation; horizon N = 8, sampling period Ts = 0.000125s 

 

VII. CONCLUSION 

The paper deals with a study of Predictive Control design 
for PMSM drives. The general model of the PMSM was ex-
plained and used in model-based control design. The industrial 
cascade PI control was briefly explained as well. The compa-
rative example demonstrates the correspondence of industrial 
realization and model-based design approach realization. 
Predictive Control seems to be promising way to optimize 
the drive control with considering other different require-
ments. The requirements, to be considered, may be e.g. re-
quirements on different types of drive constraints, which 
cannot be solved via conventional control systems. 
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